An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe

Author:

Poncoş ValentinORCID,Stanciu IrinaORCID,Teleagă Delia,Maţenco Liviu,Bozsó IstvánORCID,Szakács Alexandru,Birtas Dan,Toma Ştefan-AdrianORCID,Stănică Adrian,Rădulescu Vlad

Abstract

Ground and infrastructure stability are important for our technologically based civilization. Infrastructure projects take into consideration the risk posed by ground displacement (e.g., seismicity, geological conditions and geomorphology). To address this risk, earth scientists and civil engineers employ a range of measurement technologies, such as optical/laser leveling, GNSS and, lately, SAR interferometry. Currently there is a rich source of measurement information provided in various formats that covers most of the industrialized world. Integration of this information becomes an issue that will only increase in importance in the future. This work describes a practical approach to address and validate integrated stability measurements through the development of a platform that could be easily used by a variety of groups, from geoscientists to civil engineers and also private citizens with no training in this field. The platform enables quick cross-validation between different data sources, easy detection of critical areas at all scales (from large-scale individual buildings to small-scale tectonics) and can be linked to end-users from various monitoring fields and countries for automated notifications. This work is closing the gap between the specialized monitoring work and the general public, delivering the full value of technology for societal benefits in a free and open manner. The platform is calibrated and validated by an application of SAR interferometry data to specific situations in the general area of the Romanian Carpathians and their foreland. The results demonstrate an interplay between anthropogenically induced changes and high-amplitude active tectono–sedimentary processes creating rapid regional and local topographic variations.

Funder

Romanian Ministry of Research, Innovation and Digitalization

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry;ISPRS International Journal of Geo-Information;2024-07-02

2. C-GMS - The Canadian Ground Motion Service;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

3. Urban area: infrastructure, buildings, and cultural heritage;Satellite Interferometry Data Interpretation and Exploitation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3