A Novel Workflow for Seasonal Wetland Identification Using Bi-Weekly Multiple Remote Sensing Data

Author:

Xing Liwei,Niu ZhenguoORCID,Jiao Cuicui,Zhang Jing,Han Shuqing,Cheng Guodong,Wu JianzhaiORCID

Abstract

Accurate wetland mapping is essential for their protection and management; however, it is difficult to accurately identify seasonal wetlands because of irregular rainfall and the potential lack of water inundation. In this study, we propose a novel method to generate reliable seasonal wetland maps with a spatial resolution of 20 m using a seasonal-rule-based method in the Zhalong and Momoge National Nature Reserves. This study used Sentinel-1 and Sentinel-2 data, along with a bi-weekly composition method to generate a 15-day image time series. The random forest algorithm was used to classify the images into vegetation, waterbodies, bare land, and wet bare land during each time period. Several rules were incorporated based on the intra-annual changes in the seasonal wetlands and annual wetland maps of the study regions were generated. Validation processes showed that the overall accuracy and kappa coefficient were above 89.8% and 0.87, respectively. The seasonal-rule-based method was able to identify seasonal marshes, flooded wetlands, and artificial wetlands (e.g., paddy fields). Zonal analysis indicated that seasonal wetland types, including flooded wetlands and seasonal marshes, accounted for over 50% of the total wetland area in both Zhalong and Momoge National Nature Reserves; and permanent wetlands, including permanent water and permanent marsh, only accounted for 11% and 12% in the two reserves, respectively. This study proposes a new method to generate reliable annual wetland maps that include seasonal wetlands, providing an accurate dataset for interannual change analyses and wetland protection decision-making.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3