Abstract
Robotic High-Throughput Phenotyping (HTP) technology has been a powerful tool for selecting high-quality crop varieties among large quantities of traits. Due to the advantages of multi-view observation and high accuracy, ground HTP robots have been widely studied in recent years. In this paper, we study an ultra-narrow wheeled robot equipped with RGB-D cameras for inter-row maize HTP. The challenges of the narrow operating space, intensive light changes, and messy cross-leaf interference in rows of maize crops are considered. An in situ and inter-row stem diameter measurement method for HTP robots is proposed. To this end, we first introduce the stem diameter measurement pipeline, in which a convolutional neural network is employed to detect stems, and the point cloud is analyzed to estimate the stem diameters. Second, we present a clustering strategy based on DBSCAN for extracting stem point clouds under the condition that the stem is shaded by dense leaves. Third, we present a point cloud filling strategy to fill the stem region with missing depth values due to the occlusion by other organs. Finally, we employ convex hull and plane projection of the point cloud to estimate the stem diameters. The results show that the R2 and RMSE of stem diameter measurement are up to 0.72 and 2.95 mm, demonstrating its effectiveness.
Funder
National Natural Science Foundation of China
National Key Research and Development Plant Project
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献