Evaluating the Capability of Satellite Hyperspectral Imager, the ZY1–02D, for Topsoil Nitrogen Content Estimation and Mapping of Farmlands in Black Soil Area, China

Author:

Xu ZhengyuanORCID,Chen Shengbo,Zhu BingxueORCID,Chen Liwen,Ye YinghuiORCID,Lu Peng

Abstract

Soil nitrogen (N) content plays a vital role in agriculture and biogeochemical processes, ranging from the N fertilization management for intensive agricultural production to the patterns of N cycling in agroecological systems. While proximal sensing in laboratory settings can achieve ideal soil N estimation accuracy, the estimation and mapping by using remote sensing methods in a large spatial scale diplays low ability. A new hyperspectral imager with 166 spectral channels, the ZY1-02D, makes possible the detection of subtle but important spectral features of soil. This study aimed at exploring the capability of the ZY1-02D to estimate and map the topsoil N content of the black soil-covered farmlands in northeast China. To this aim, 646 soil samples from study sites were collected, processed, spectrally and geochemically measured for the soil N sensitive bands detection and partial least squares regression (PLSR) calibration and validation. The sensitive bands detection results showed an appealing regularity of the variability and stable tendency of the soil N sensitive spectral bands with the change of the sample size. Based on this, we compared the estimation capacity of the models developed with the full wavelength spectra and the models developed with the sensitive bands. The estimation based on ZY1-02D full wavelength spectral reflectance were robust, with R2 of 0.64 in validation. Further, the results of model developed with the sensitive bands showed better validation accuracy with R2 of 0.66 and were applied to create a map of topsoil N content of farmlands in the northeast China black soil area. The results demonstrated that sensitive bands modelling could enhance the accuracy of the estimation and simplify model, and what is more, showed the ideal capability of ZY1-02D for soil N content estimation at the regional scale.

Funder

Land Resource Evolution Mechanism and Its Sustainable Use in Global Black Soil Critical Zone

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3