Robust Multimodal Remote Sensing Image Registration Based on Local Statistical Frequency Information

Author:

Liu XiangzengORCID,Xue JiepengORCID,Xu XuelingORCID,Lu ZixiangORCID,Liu Ruyi,Zhao Bocheng,Li YunanORCID,Miao QiguangORCID

Abstract

Multimodal remote sensing image registration is a prerequisite for comprehensive application of remote sensing image data. However, inconsistent imaging environment and conditions often lead to obvious geometric deformations and significant contrast differences between multimodal remote sensing images, which makes the common feature extraction extremely difficult, resulting in their registration still being a challenging task. To address this issue, a robust local statistics-based registration framework is proposed, and the constructed descriptors are invariant to contrast changes and geometric transformations induced by imaging conditions. Firstly, maximum phase congruency of local frequency information is performed by optimizing the control parameters. Then, salient feature points are located according to the phase congruency response map. Subsequently, the geometric and contrast invariant descriptors are constructed based on a joint local frequency information map that combines Log-Gabor filter responses over multiple scales and orientations. Finally, image matching is achieved by finding the corresponding descriptors; image registration is further completed by calculating the transformation between the corresponding feature points. The proposed registration framework was evaluated on four different multimodal image datasets with varying degrees of contrast differences and geometric deformations. Experimental results demonstrated that our method outperformed several state-of-the-art methods in terms of robustness and precision, confirming its effectiveness.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3