Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution

Author:

Bogina Maria1,Chistyakov Alexey1,Sharkov Evgenii1,Kovalchuk Elena1,Golovanova Tatiana1

Affiliation:

1. Institute of Geology of Ore Deposits Petrography Mineralogy and Geochemistry, Russian Academy of Sciences, Staromonetny per., 35, 119017 Moscow, Russia

Abstract

The Middle Paleoproterozoic (1.99 Ga) Tiksheozero ultramafic‒alkaline‒carbonatite complex in Northern Karelia is one of the Earth’s oldest alkaline complexes. The major and trace-element compositions of minerals were used to decipher the genetic relations between ultramafic cumulates, alkaline rocks, and carbonatites. Based on detailed analysis of clinopyroxenes from ultramafic cumulates, it was assumed that they were derived from an alkaline melt. It was estimated that ultramafic cumulates and alkaline rocks were formed at close moderate pressure, which in combination with the above facts, is consistent with their cogenetic origin. The REE patterns of clinopyroxenes are characterized by the high LREE/HREE fractionation, with slightly convex-upward LREE patterns (La/Nd < 1), which are typical of deep-seated cumulates formed in an equilibrium with an alkaline basaltic melt. Two types of REE zoning were distinguished in apatite using cathodoluminescence imaging. The first type with an outward LREE decrease was found in apatite from silicate rocks of the complex and was likely produced by the closed-system overgrowth of apatite from a residual melt at the late magmatic stage. In contrast, apatite from carbonatite is characterized by a slight outward LREE increase, which is likely related to the re-equilibration of apatite with fresh batches of REE-enriched carbonatite magma. Precipitation of monazite along fractures and margins of apatite in complex with essential HREE and Y enrichment observed in syenite is indicative of the metasomatic interaction of this rock with fluid. Apatites from alkaline rocks and carbonatites define a common trend in the Y–Ho diagram, with a decrease in the Y/Ho ratio from foidolites to carbonatites. This fact together with the absence of signs of liquid immiscibility, and compositional variations in apatite in silicate rocks and carbonatites, are consistent with their origin through fractional crystallization rather than liquid immiscibility.

Funder

State Assignment of the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3