Thermal Stability and Resistance to Biodegradation of Humic Acid Adsorbed on Clay Minerals

Author:

Danilin Igor1ORCID,Tolpeshta Inna1ORCID,Izosimova Yulia1,Pozdnyakov Lev1,Stepanov Andrey1,Salimgareeva Olga1

Affiliation:

1. Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

This article studies sorption regularities and evaluates thermal stability and resistance to microbial degradation of humic acid during three sorption cycles on bentonite clay, kaolinite, and muscovite using TGA/DSC, XRD, hydrophobic chromatography, light and electron microscopy, etc. The experiment revealed that kaolinite sorbed more humic acids (HAs) in terms of unit surface area (1.03 × 10−3 C, g/m2) compared to bentonite (0.35 × 10−3 C, g/m 10−3 g/m2). Sorption at pH 4.5 showed HA fractionation in amphiphilicity and chemical composition. HA was sorbed on the surface of all sorbents, mainly via hydrophobic components. No intercalation of HA into the interlayer spaces of montmorillonite was observed during sorption. Sorption via hydrophilic interactions was mostly performed on muscovite and bentonite rather than on kaolinite. Sorption of HA resulted in changes in its chemical composition and decreased C/N compared to free HA, which demonstrated selective sorption of nitrogen-containing compounds more typical of muscovite. All minerals adsorbed only a relatively thermolabile HA fraction, while its thermal stability increased compared to that before the experiment. The thermal stability and ratio of the Exo2/Exo1 peak areas on the DSC curves of sorbed HA increased with each subsequent sorption cycle. We revealed the following relationship between thermal stability and resistance to microbial oxidation of the sorbed HA: The higher the thermal stability, the less available the sorbed HA becomes for utilization by microorganisms.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3