Flotation Performance and Adsorption Mechanism of Cerussite with Phenylpropenyl Hydroxamic Acid Collector

Author:

Xie Honghui12,Yao Xiang12,Yu Xinyang12,Mao Linghan12,Zeng Yuhui3,Wu Feng12,Guo Shuzheng12,He Guichun12

Affiliation:

1. Jiangxi Provincial Key Laboratory of Mining Engineering, Ganzhou 341000, China

2. School of Resource and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

3. Sichuan JCC Rare Earth Metals Co., Ltd., Liangshan Yi Autonomous Prefecture, Xichang 615000, China

Abstract

In this paper, the flotation separation of cerussite and quartz under different experimental conditions was studied by using phenylpropenyl hydroxamic acid (PHA) as a collector. The flotation performance of PHA was studied through experiments involving pure minerals and artificial mixed minerals, and the results showed that PHA has good selectivity and collecting ability for cerussite. The adsorption mechanism of the collector on the surface of cerussite was investigated via adsorption capacity experiments, zeta potential tests, FTIR spectroscopy, and XPS analysis. The adsorption capacity results showed that PHA can be well adsorbed on the surface of cerussite. The results of the zeta potential tests showed that PHA has strong chemical adsorption on the cerussite surface. FTIR and XPS analysis showed that PHA may form a Pb–PHA complex on the cerussite surface to improve the floatability of cerussite.

Funder

National Nature Science Foundation of China

“Double height project” of Jiangxi province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3