The Process Mineralogical Characterization of Bayan Obo Rare-Earth Tailings and Density Functional Theory Study of the Occurrence State of Sc

Author:

Shao Dawei12,Du Xuebi12,Deng Yang2,Yan Zixin2,Duan Wanchun3,Yu Hongdong12,Qi Tao12

Affiliation:

1. School of Rare Earths, University of Science and Technology of China, Hefei 230026, China

2. Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China

3. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract

As Bayan Obo rare-earth tailings, which are generated after the production of mineral products with the raw ore from different mining areas, are considered secondary resources rich in valuable elements such as F, Fe, REE, and Nb, an effective method is urgently needed to recover such valuable elements for resource recycling and environmental conservation. A mineralogical analysis can enable process diagnosis, design, and optimization and is the key to comprehensively utilizing valuable elements. Hence, detailed mineralogical characterization is necessary as a starting point to develop a feasible processing flowsheet. In this study, various detection methods, namely inductively coupled plasma-optical emission spectrometry (ICP), X-ray Fluorescence Spectrometer (XRF), X-ray powder diffractometer (XRD), scanning electron microscopy system with an energy dispersive spectrometer (SEM-EDS), mineral liberation analysis (MLA), and electron probe microanalysis (EPMA), were applied to conduct detailed mineralogical characterization of Bayan Obo rare-earth tailings, and the occurrence state of Sc in the main Sc-bearing minerals was studied using density functional theory (DFT). The results showed that Fe mainly occurs in hematite, riebeckite, ankerite, siderite, and pyrite, with contents of 50.15 wt%, 27.94 wt%, 8.34 wt%, 4.92 wt%, and 5.59 wt%, respectively. Nearly all F occurs in 26.8 wt% fluorite. The main rare-earth minerals are bastnasite, apatite, and monazite (La), with contents of 5.0%, 5.0%, and 1.6% in Bayan Obo rare-earth tailings, respectively. Notably, 48.47%, 21.70%, 10.34%, and 10.28% of niobium element occurs in nioboaeschynite, pyrochlore, dingdaohengite, and ilmenorutile, respectively. Scandium was detected in five minerals, namely aegirine, riebeckite, monazite, ilmenorutile, and niobite, with average contents of 0.04 wt%, 0.22 wt%, 0.06 wt%, 0.06 wt%, and 1.58 wt%, respectively. According to the DFT analysis, the state of Sc in aegirine is different from that in riebeckite. Scandium in aegirine mainly substitutes Fe or enters the interstitial lattice site, while Sc in riebeckite tends to replace Fe. Based on these results, a process for recovering valuable elements from tailings is proposed.

Funder

the Research Projects of the Ganjiang Innovation Academy and the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3