The Effect of Thermal Maturity on the Pore Structure Heterogeneity of Xiamaling Shale by Multifractal Analysis Theory: A Case from Pyrolysis Simulation Experiments

Author:

Wu Wei1,Liang Zhikai23ORCID,Xu Liang1,Liu Yong4,Li Yi1,Tang Xianglu23ORCID,Yin Yingzi1,Chen Yao1

Affiliation:

1. Shale Gas Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610056, China

2. Unconventional Oil and Gas Science and Technology Research Institute, China University of Petroleum, Beijing 102249, China

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

4. PetroChina Southwest Oil & Gas Field Company, Chengdu 610056, China

Abstract

Shale oil and gas, as source-reservoir-type resources, result from organic matter hydrocarbon generation, diagenesis, and nanoscale pore during the evolution processes, which are essential aspects of shale gas enrichment and reservoir formation. To investigate the impact of diagenetic hydrocarbons on shale pore heterogeneity, a thermal simulation of hydrocarbon formation was conducted on immature shale from the Middle Proterozoic Xiamaling Formation in the Zhangjiakou area, covering stages from mature to overmature. Nuclear magnetic resonance (NMR) instruments analyzed the microstructure of the thermally simulated samples, and the multifractal model quantitatively assessed pore development and heterogeneity in the experimental samples. The results reveal that the quartz and clay mineral contents show alternating trends with increasing temperature. Organic matter dissolution intensifies while unstable mineral content decreases, promoting clay mineral content development. Pyrolysis intensity influences Total Organic Carbon (TOC), which reduces as hydrocarbons are generated and released during simulation. Porosity exhibits a decreasing–increasing–decreasing trend during thermal evolution, peaking at high maturity. At maturity, hydrocarbon generation obstructs pore space, resulting in higher levels of bound fluid porosity than those of movable fluid porosity. Conversely, high maturity leads to many organic matter micropores, elevating movable fluid porosity and facilitating seepage. Shale pore heterogeneity significantly increases before 450 °C due to the dissolution of pores and the generation of liquid and gas hydrocarbons. In the highly overmature stage, pore heterogeneity tends to increase slowly, correlated with the generation of numerous micro- and nano-organic matter pores.

Funder

National Natural Science Foundation of China

National Energy Shale Gas R & D (Experiment) Center Grant

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3