Effect of Nanobubbles on the Flotation Behavior of Microfine-Grained Serpentine

Author:

Lu Bingang12,Xu Weiguang34567,Luo Chunhua12,Li Wenjuan34567,Su Xiaohui12,Song Yongsheng34567,Zhou Jianhang34567,Li Kaiguo34567

Affiliation:

1. National Key Laboratory of Ni&Co Associated Minerals Resources Development and Comprehensive Utilization, Jinchang 737100, China

2. Jinchuan Nickel & Cobalt Research and Engineering Insitute, Jinchang 737100, China

3. National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Corporation Limited, Beijing 100088, China

4. GRINM Resources and Environment Tech. Co., Ltd., Beijing 100088, China

5. General Research Institute for Nonferrous Metals, Beijing 100088, China

6. Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing 100088, China

7. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

Abstract

At present, scholars mainly study the relationship between nanobubbles and useful minerals, often ignoring the influence of bubbles on fine gangue minerals. When selecting nickel sulfide ore, scholars often faced with mudded and irrepressible serpentine, which seriously affects the quality of the concentrate. This mudded serpentine mineral often enters foam products with bubbles. In this study, the role of nanobubbles in the flotation behavior of hydrophilic serpentine was examined. Nanobubbles were successfully prepared via ultrasonic cavitation, with sizes ranging from 50 to 250 nm. The size and number of bubbles produced at 1 min and 2 min of sonication were significantly better than those of the prolonged test group, and it was found that longer sonication time did not produce better results. The stability of the nanobubbles produced via ultrasound was studied, and it was found that the nanobubbles were stable, with no change in size and only a slight decrease in number as the resting time increased. Nanobubbles were introduced into serpentine flotation, we found that the presence of nanobubbles significantly reduced the flotation recovery of serpentine. The presence of nanobubbles reduced the froth entrainment rate of microfine-grained serpentine, which in turn reduced its flotation rate. In the depressant group trials, it was found that the nanobubbles also reduced the amount of depressant. In short, the presence of nanobubbles can prevent the floating of fine hydrophilic gangues during flotation.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3