Selective Recovery of Copper from the Mixed Metals Leach Liquor of E-Waste Materials by Ion-Exchange: Batch and Column Study

Author:

Ajiboye Emmanuel A.1ORCID,Aishvarya V.2,Petersen Jochen1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Cape Town, Rondebosh 7700, South Africa

2. Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India

Abstract

Recovery of metals from e-waste forms a major focus of circular economy thinking and aligns well with the Sustainable Development Goals (SDG). While hydrometallurgical extraction from electronic printed circuit boards (PCBs) is well established, the separation of metals from the leach liquors, which are complex mixtures, remains a challenge. To achieve selective separation, ion exchange resins with chelating functional groups were employed in the present study. Batch and column studies for selective recovery of Cu2+ from a given mixed metals leach solution were conducted using Dowex M4195 resin, and both the adsorption isotherm and kinetics were studied. The process involves three major steps: selective recovery of Cu2+ by M4195 at low pH and elution with H2SO4; sorption of Ni2+ from the raffinate by Dowex M4195 at pH 2 and removal of Fe3+ from raffinate. The batch experimental results showed appreciable and selective recovery of copper (51.1%) at pH 0.7 and 40.0% Ni2+ was sorbed from raffinate at pH 2.0 with co-adsorption of Fe3+ as impurity. The batch adsorption data could be fitted with both Langmuir and Freundlich isotherms and exhibited pseudo-second-order kinetics. Column studies agreed with the Yoon–Nelson model and indicated that Cu2+ break-through time in the column decreased with an increase in flowrate from 3.0 to 10.0 min/mL and decreased in sorption capacity, while it was delayed with increased bed heights from 20 to 30 mm. Complete elution of Ni2+ was obtained with 2.0 M H2SO4 after selective elution of trace impurities with dilute HCl. Iron in the raffinate was removed via the addition of Ca (OH)2 at pH 4.0 leaving Zn-Al in the solution.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference54 articles.

1. Baldé, C.P., Forti, V., Gray, V., Kuehr, R., and Stegmann, P. (2017). The Global E-Waste Monitor 2017: Quantities, Flows, and Resources, United Nations University.

2. Forti, V., Baldé, C.P., Kuehr, R., and Bel, G. (2020). The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential, International Solid Waste Association (ISWA).

3. Kumar, S. (2011). Integrated Waste Management Volume II, InTech Publishers. Available online: http://www.intechopen.com/books/integrated-waste-management-volume-ii/recycling-of-printed-circuit-boards.

4. Effect of Fe(III) during copper electrowinning at higher current density;Das;Int. J. Miner. Process.,1996

5. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes;Shaw;J. Mater.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3