2-D Characteristics of Wave Deformation Due to Wave-Current Interactions with Density Currents in an Estuary

Author:

Lee Woo-DongORCID,Mizutani Norimi,Hur Dong-Soo

Abstract

In this study, numerical simulations were conducted in order to understand the role of wave-current interactions in wave deformation. The wave-current interaction mechanisms, wave reflection and energy loss due to currents, the effect of incident conditions on wave-current interactions, the advection-diffusion characteristics of saltwater, and the effect of density currents on wave-current interactions were discussed. In addition, the effect of saltwater–freshwater density on wave-current interactions was investigated under a hypopycnal flow field via numerical model testing. Turbulence was stronger under the influence of wave-current interactions than under the influence of waves alone, as wave-current interactions reduced wave energy, which led to decreases in wave height. This phenomenon was more prominent under shorter wave periods and higher current velocities. These results increase our understanding of hydrodynamic phenomena in estuaries in which saltwater–freshwater and wave-current pairs coexist.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference76 articles.

1. The Estuarine Circulation

2. Wave–current interactions in a tide dominated estuary

3. Rational theory of delta formation;Bates;Bull. Am. Assoc. Pet. Geol.,1953

4. Principles of Sedimentology and Stratigraphy;Boggs,1995

5. Depth- and current-induced effects on wave propagation into the Altamaha River Estuary, Georgia

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3