Abstract
In this study, numerical simulations were conducted in order to understand the role of wave-current interactions in wave deformation. The wave-current interaction mechanisms, wave reflection and energy loss due to currents, the effect of incident conditions on wave-current interactions, the advection-diffusion characteristics of saltwater, and the effect of density currents on wave-current interactions were discussed. In addition, the effect of saltwater–freshwater density on wave-current interactions was investigated under a hypopycnal flow field via numerical model testing. Turbulence was stronger under the influence of wave-current interactions than under the influence of waves alone, as wave-current interactions reduced wave energy, which led to decreases in wave height. This phenomenon was more prominent under shorter wave periods and higher current velocities. These results increase our understanding of hydrodynamic phenomena in estuaries in which saltwater–freshwater and wave-current pairs coexist.
Funder
National Research Foundation of Korea
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献