Abstract
Early recognition of glacial lake outburst floods (GLOFs) is required for timely and cost-effective remedial efforts to be implemented. Although the formation of ice-dammed lakes is known to begin as a pond or river that was blocked by ice from the glacier terminus, the relationship between glacier dynamics and lake development is not well understood. Using a time-series of Sentinel-1A synthetic aperture radar (SAR) data acquired just before and after the lake outburst event in 2018, information is presented on the dynamic characteristics of Kyagar Glacier and its ice-dammed lake. Glacier velocity data derived from interferometry show that the glacier tongue experienced an accelerated advance (maximum velocity of 20 cm/day) just one month before the lake outburst, and a decreased velocity (maximum of 13 cm/day) afterward. Interferometric and backscattering properties of this region provide valuable insight into the diverse glaciated environment. Furthermore, daily temperature and total precipitation data derived from the ECMWF re-analysis (ERA)Interim highlight the importance of the sustained high-temperature driving force, supporting empirical observations from previous studies. The spatial and temporal resolution offered by the Sentinel-1A data allows variations in the glacier surface motion and lake evolution to be detected, meaning that the interaction mechanism between the glacial lake and the associated glacier can be explored. Although the glacier surge provided the boundary conditions favorable for lake formation, the short-term high temperatures and precipitation caused the melting of ice dams and also a rapid increase in the amount of water stored, which accelerated the potential for a lake outburst.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献