Affiliation:
1. The School of Electrical Engineering, Xinjiang University, Huarui Street 777#, Shuimogou District, Urumqi 830047, China
Abstract
To address the current demands for antenna miniaturization, ultra-bandwidth, and circular polarization in advanced medical devices, a novel ISM band implantable antenna for blood glucose monitoring has been developed. This antenna achieves miniaturization by incorporating slots in the radiation patch and adding symmetric short-circuit probes, resulting in a compact size of only 0.054λ0 × 0.054λ0 × 0.005λ0 (λ0 is the wavelength in free space in respect of the lowest working frequency). By combining two resonance points and utilizing a differential feed structure, the antenna achieves ultra-broadband and circular polarization. Simulations indicate a |S11| bandwidth of 1.1 GHz (1.65–2.75 GHz) and an effective axial ratio (based on 3 dB axis ratio) bandwidth of 590 MHz (1.89–2.48 GHz), able to cover both the ISM frequency band (2.45 GHz) and the mid-field frequency band (1.9 GHz). The antenna exhibits CP gains of −20.04 dBi at a frequency of 2.45 GHz, while it shows gains of −24.64 dBi at 1.9 GHz. Furthermore, a superstrate layer on the antenna’s radiating surface enhances its biocompatibility and minimizes its impact on the human body. Simulation and experimental results indicate that the antenna can establish a stable wireless communication link for implantable continuous blood glucose monitoring systems.
Funder
Xinjiang Uygur Autonomous Region Natural Science Foundation General Project
Tianchi Talent Project in Xinjiang Uygur Autonomous Region
National Natural Science Foundation of China
Xinjiang University Youth Doctoral Research Launch Project