A Novel MPPT Technique Based on Combination between the Incremental Conductance and Hysteresis Control Applied in a Standalone PV System

Author:

El Ouardi Hind1ORCID,El Gadari Ayoub1ORCID,Mokhlis Mohcine2,Ounejjar Youssef1,Bejjit Lahcen1,Al-Haddad Kamal3

Affiliation:

1. Electrical Engineering Department, High School of Technologie (EST), University Moulay Ismail, Meknes 50000, Morocco

2. Electrical Engineering Department, Mohammed V University, Rabat 10000, Morocco

3. Electrical Engineering Department, Ecole de Technologie Superieure (ETS), Montreal, QC 11290, Canada

Abstract

A new Maximum Power Point Tracking (MPPT) method, consisting in combining the Incremental Conductance (INC) algorithm with the Hysteresis control, was developed and applied to a standalone photovoltaic (PV) system to generate the maximum power of the PV array. The INC allows one to search for the Maximum Power Point (MPP). The hysteresis improves the accuracy of tracking the MPP very fast even after severe changes in weather conditions and has no oscillations around the MPP. The five-level S-Packed U Cells (SPUC5) inverter is used to transform the produced DC voltage to AC voltage; it generates five-level output voltage with a small number of switches and only DC source voltage. The capacitors of the SPUC5 are controlled by the Pulse Width Modulation (PWM) in order to balance their voltages. The proposed PV system was established and trained in the MATLAB/Simulink environment under various irradiation conditions. A comparison between different MPPT methods, INC-PWM and INC-PI, was investigated in order to examine the effectiveness of the developed MPPT technique in particular, and of all the PV system components. The results of the simulation validate the effectiveness of the suggested MPPT algorithm as well as the used SPUC5 inverter.

Funder

l’école de technology supérieure

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3