Assessment of Artificial Neural Network through Drought Indices

Author:

Doshi Smit ChetanORCID,Shanmugam Mohana SundaramORCID,Akib ShatirahORCID

Abstract

Prediction of potential evapotranspiration (PET) using an artificial neural network (ANN) with a different network architecture is not uncommon. Most researchers select the optimal network using statistical indicators. However, there is still a gap to be filled in future applications in various drought indices and of assessment of location, duration, average, maximum and minimum. The objective was to compare the performance of PET computed using ANN to the Penman–Monteith technique and compare drought indices standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI), using two different computed PET for the durations of 1, 3, 6, 9, and 12–months. Statistical performance of predicted PET shows an RMSE of 9.34 mm/month, RSR of 0.28, R2 of 1.00, NSE of 0.92, and PBIAS of −0.04. Predicted PET based on ANN is lower than that the Penman–Monteith approach for maximum values and higher for minimum values. SPEI–Penman–Monteith and SPI have a monthly correlation of greater than 0.95 and similar severity categories, but SPEI is lower than SPI. The average monthly index values for SPEI prediction show that SPEI–ANN captures drought conditions with higher values than SPEI–Penman–Monteith. PET–based ANN, performs robustly in prediction, fails by a degree of severity classification to capture drought conditions when utilized.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference111 articles.

1. Connor, R. (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World, UNESCO Publishing.

2. Climate Change Impacts on Irrigation Water Requirements: Effects of Mitigation, 1990–2080;Fischer;Technol. Forecast. Soc. Chang.,2007

3. Evaluation of Reference Evapotranspiration Methods and Sensitivity Analysis of Climatic Parameters for Sub–Humid Sub–Tropical Locations in Western Himalayas (India);Poddar;ISH J. Hydraul. Eng.,2021

4. Water Balance of Global Aquifers Revealed by Groundwater Footprint;Gleeson;Nature,2012

5. Drought and Food Security in the Middle East: An Analytical Framework;Hameed;Agric. For. Meteorol.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3