Limitations of Deuterium-Labelled Substrates for Quantifying NADPH Metabolism in Heterotrophic Arabidopsis Cell Cultures

Author:

Smith Edward N.ORCID,McCullagh James S. O.,Ratcliffe R. GeorgeORCID,Kruger Nicholas J.

Abstract

NADPH is the primary source of cellular reductant for biosynthesis, and strategies for increasing productivity via metabolic engineering need to take account of the requirement for reducing power. In plants, while the oxidative pentose phosphate pathway is the most direct route for NADPH production in heterotrophic tissues, there is increasing evidence that other pathways make significant contributions to redox balance. Deuterium-based isotopic labelling strategies have recently been developed to quantify the relative production of NADPH from different pathways in mammalian cells, but the application of these methods to plants has not been critically evaluated. In this study, LC-MS was used to measure deuterium incorporation into metabolites extracted from heterotrophic Arabidopsis cell cultures grown on [1-2H]glucose or D2O. The results show that a high rate of flavin-enzyme-catalysed water exchange obscures labelling of NADPH from deuterated substrates and that this exchange cannot be accurately accounted for due to exchange between triose- and hexose-phosphates. In addition, the duplication of NADPH generating reactions between subcellular compartments can confound analysis based on whole cell extracts. Understanding how the structure of the metabolic network affects the applicability of deuterium labelling methods is a prerequisite for development of more effective flux determination strategies, ensuring data are both quantitative and representative of endogenous biological processes.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3