Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches

Author:

Rosen Vollmar Ana K.ORCID,Rattray Nicholas J. W.ORCID,Cai Yuping,Santos-Neto Álvaro J.ORCID,Deziel Nicole C.ORCID,Jukic Anne Marie Z.,Johnson Caroline H.ORCID

Abstract

Metabolomics studies of the early-life exposome often use maternal urine specimens to investigate critical developmental windows, including the periconceptional period and early pregnancy. During these windows changes in kidney function can impact urine concentration. This makes accounting for differential urinary dilution across samples challenging. Because there is no consensus on the ideal normalization approach for urinary metabolomics data, this study’s objective was to determine the optimal post-analytical normalization approach for untargeted metabolomics analysis from a periconceptional cohort of 45 women. Urine samples consisted of 90 paired pre- and post-implantation samples. After untargeted mass spectrometry-based metabolomics analysis, we systematically compared the performance of three common approaches to adjust for urinary dilution—creatinine adjustment, specific gravity adjustment, and probabilistic quotient normalization (PQN)—using unsupervised principal components analysis, relative standard deviation (RSD) of pooled quality control samples, and orthogonal partial least-squares discriminant analysis (OPLS-DA). Results showed that creatinine adjustment is not a reliable approach to normalize urinary periconceptional metabolomics data. Either specific gravity or PQN are more reliable methods to adjust for urinary concentration, with tighter quality control sample clustering, lower RSD, and better OPLS-DA performance compared to creatinine adjustment. These findings have implications for metabolomics analyses on urine samples taken around the time of conception and in contexts where kidney function may be altered.

Funder

Yale School of Public Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3