Yellowstone Lake Ecosystem Restoration: A Case Study for Invasive Fish Management

Author:

Koel Todd M.ORCID,Arnold Jeffery L.,Bigelow Patricia E.,Brenden Travis O.,Davis Jeffery D.,Detjens Colleen R.,Doepke Philip D.,Ertel Brian D.,Glassic Hayley C.ORCID,Gresswell Robert E.,Guy Christopher S.,MacDonald Drew J.,Ruhl Michael E.,Stuth Todd J.,Sweet David P.,Syslo John M.,Thomas Nathan A.,Tronstad Lusha M.ORCID,White Patrick J.,Zale Alexander V.

Abstract

Invasive predatory lake trout Salvelinus namaycush were discovered in Yellowstone Lake in 1994 and caused a precipitous decrease in abundance of native Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri. Suppression efforts (primarily gillnetting) initiated in 1995 did not curtail lake trout population growth or lakewide expansion. An adaptive management strategy was developed in 2010 that specified desired conditions indicative of ecosystem recovery. Population modeling was used to estimate effects of suppression efforts on the lake trout and establish effort benchmarks to achieve negative population growth (λ < 1). Partnerships enhanced funding support, and a scientific review panel provided guidance to increase suppression gillnetting effort to >46,800 100-m net nights; this effort level was achieved in 2012 and led to a reduction in lake trout biomass. Total lake trout biomass declined from 432,017 kg in 2012 to 196,675 kg in 2019, primarily because of a 79% reduction in adults. Total abundance declined from 925,208 in 2012 to 673,983 in 2019 but was highly variable because of recruitment of age-2 fish. Overall, 3.35 million lake trout were killed by suppression efforts from 1995 to 2019. Cutthroat trout abundance remained below target levels, but relative condition increased, large individuals (> 400 mm) became more abundant, and individual weights doubled, probably because of reduced density. Continued actions to suppress lake trout will facilitate further recovery of the cutthroat trout population and integrity of the Yellowstone Lake ecosystem.

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3