Abstract
This study examines the spatial and temporal impacts of climate change on grain production in China. This is achieved by establishing a spatial error model consisting of four indicators: the climate, air pollution, economic behavior, and agricultural technology, covering 31 provinces in China from 2004 to 2020. These indicators are used to validate the spatial impacts of climate change on grain production. Air pollution data are used as instrumental variables to address the causality between climate and grain production. The regression results show that: First, climatic variables all have a non-linear “increasing then decreasing” effect on food production. Second, SO2, PM10, and PM2.5 have a negative impact on grain production. Based on the model, changes in the climatic production potential of grain crops can be calculated, and the future spatial layout of climate production can also be predicted by using random forests. Studies have shown that the median value of China’s grain production potential is decreasing, and the low value is increasing.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献