Energy Saving with Zero Hot Spots: A Novel Power Control Approach for Sustainable and Stable Data Centers

Author:

Li DanyangORCID,Zhang Yuqi,Song Jie,Liu Hui,Jiang Jingqing

Abstract

Data centers with high energy consumption have become a threat to urban sustainability on electric energy. In contrast, hot spots in a data center are another threat to server stability, which leads to unsafe data storage and service provisioning to urban lives. However, state-of-the-art works cannot ensure sustainability and stability together because they fail to consider them holistically. For example, some existing works eliminate the hot spots by increasing cooling power, which results in lower sustainability. In contrast, others reduce energy consumption by saving the cooling power, which harms stability. Therefore, to balance the hot spot elimination and energy saving through power control remains challenging, this paper proposes a novel power control approach for energy saving with zero hot spots in data centers. Power control works when hot spots appear, or consumed energy is excess. Specifically, we formulated a total consumption minimization problem to characterize and analyze the optimal set points for power control, where the number of hot spots is zero and the energy consumption is low. Adding the interactional penalty models can determine the power control approach when the objective function obtains the optimal solution. We propose a Modified Differential Evolution algorithm (MDE) to solve the function quickly and accurately. It adopts adaptive parameters to reduce the computing time. Meanwhile, it avoids optimal local solutions by changing mutation operations. Further, simulation experiments using our optimal solution demonstrate that energy consumption saves about 13% on average with zero hot spots, compared with three typical approaches.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3