Research on Flow Field Characteristics in Water Jet Nozzle and Surface Damage Caused by Target Impact

Author:

Zhang Qinghong,Shi Zhouhao,Shi Weidong,Xie Zhanshan,Tan Linwei,Yang Yongfei

Abstract

As a new processing method, water jet processing technology has risen rapidly due to its wide range of applications, no pollution, and zero discharge. In this paper, the flow characteristics and failure characteristics of ultra-high-pressure gas-liquid jet in the range of 300 MPa are analyzed by numerical calculation. The research conclusion shows that the jet atomization diffusion is caused by the friction between the liquid medium and the surrounding gas, the mixed flow of broken water droplets and cavitation. The jet diffusion process is essentially the energy exchange process between the jet in the core area and the turbulent flow in the atomization area. The distribution of the turbulent kinetic energy in the atomization area can determine the degree of jet diffusion and the rate of energy decay. The water jet impacted the surface of the target to form a crater-like annular erosion pit. With the increase of the impact pressure, the deformation showed an overall increasing trend, and the increasing trend increased significantly. The central depression of the erosion area is caused by the damage of the material by the stagnation pressure in the core area. The flow characteristics of gas-liquid flow in the process of formation and diffusion in the high-pressure water jet nozzle are explored from the microscopic point of view, and it also provides a theoretical basis for equipment optimization in engineering.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Jiangsu Water Conservancy Science and Technology Project

Nantong Science and Technology Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3