Effects of Mineral Composition on Movable Fluid Porosity in Micro-Nanoscale Porous Media

Author:

Dai Quanqi12,Zhu Yangwen12,He Yingfu12,Wang Rui12,Zheng Da3,Zhou Yinbang12,Liu Yunfeng12,Wang Guiwen4,Wu Hao5

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China

2. Petroleum Exploration and Development Research Institute, SINOPEC, Beijing 102206, China

3. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

4. College of Geosciences, China University of Petroleum—Beijing, Beijing 102249, China

5. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

In natural micro-nanoscale porous media, the movable fluid porosity can effectively represent storage and permeable properties, but various mineral compositions have complicated effects on it. Taking saline lacustrine shale as an example, this study researched the effects of mineral composition on movable fluid porosity, based on nuclear magnetic resonance (NMR), focused ion beam (FIB), and x-ray diffraction (XRD) experiments. The results show that movable fluid porosity exhibits a stronger dependence on porosity than movable fluid saturation does. Micropores (<100 nm) and macropores (>1000 nm) are mostly developed in silicate and gypsum minerals, and have a highly heterogeneous distribution. In contrast, carbonate intercrystalline pores are dominated by mesopores (100−1000 nm), and behave strongly heterogeneously. Many mesopores play a positive role in generating highly movable fluid porosity, but the development of micropores and macropores is not conducive to an increase in movable fluid porosity. Overall, a significant negative effect is observed between silicate mineral content and movable fluid porosity, and carbonate mineral content has a strong positive effect on movable fluid porosity, whereas movable fluid porosity exhibits a relatively small reduction with an increase in the gypsum.

Funder

China Postdoctoral Science Foundation

Science and Technology Department of Sinopec

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3