Electrical Vehicle Charging Load Mobility Analysis Based on a Spatial–Temporal Method in Urban Electrified-Transportation Networks

Author:

Jawad Shafqat1ORCID,Liu Junyong1

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Charging load mobility evaluation becomes one of the main concerns for charging services and power system stability due to the stochastic nature of electrical vehicles (EVs) and is critical for the robust scheduling of economic operations at different intervals. Therefore, the EV spatial–temporal approach for load mobility forecasting is presented in this article. Furthermore, the reliability indicators of large-scale EV distribution network penetration are analyzed. The Markov decision process (MDP) theory and Monte Carlo simulation are applied to efficiently forecast the charging load and stochastic path planning. A spatial–temporal model is established to robustly forecast the load demand, stochastic path planning, traffic conditions, and temperatures under different scenarios to evaluate the charging load mobility and EV drivers’ behavior. In addition, the distribution network performance indicators are explicitly evaluated. A Monte Carlo simulation is adopted to examine system stability considering various charging scenarios. Urban coupled traffic-distribution networks comprising 30-node transportation and 33-bus distribution networks are considered as a test case to illustrate the proposed study. The results analysis reveals that the proposed method can robustly estimate the charging load mobility. Furthermore, significant EV penetrations, weather, and traffic congestion further adversely affect the performance of the power system.

Funder

Basic Theory and Key Technologies of Competitive Electricity Sales Service Market

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3