Distributed Consensus Hierarchical Optimization and Control Method for Integrated Energy System Based on Event-Triggered Mechanism

Author:

Ye Jun1,Liu Bo1,Yuan Zhiqiang1,Chen Yunhui1,Wang Yufei2,Xue Hua2,Ling Chen2,Zhang Kening2

Affiliation:

1. Shanghai Electric Power Engineering Co., Ltd., Shanghai 200025, China

2. School of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

For integrated energy systems (IES) composed of a set of energy hubs (EHs), a consensus control method is usually adopted to achieve accurate sharing of electrical and thermal composite energies. To solve the communication redundancy problem of the consensus control method, a hierarchical optimization and distributed control scheme based on a dynamic event-triggered mechanism of EHs is proposed to realize stable operation of IES. An economic optimization strategy based on equal increment principle is improved to minimize the operation costs of IES in the second layer. Due to consensus control being integrated into the supply-demand power deviation calculations of EHs, the desired electrical and thermal power trajectories are accurately determined. To improve dynamic response performances in the presence of uncertain disturbances, an event-triggered communication mechanism is designed in the primary layer. The triggering threshold can be adjusted dynamically according to changes of electrical and thermal power outputs, and the redundant communication requirement in the electrical branches is reduced. Considering the coupling characteristics of IES energy networks, a consensus control method is promoted to synchronously track the desired electric and thermal power trajectories of EHs, and the goal of accurate power sharing is achieved. The frequency and pipeline pressure fluctuations are also limited within the allowable range. The economic optimization and coordinated operation of electrical and thermal composite energies in IES are guaranteed by the proposed hierarchical control structure. Additionally, only information from neighboring EHs at the event-triggered time is involved, so the computation simplicity and control performance can be obtained simultaneously. The hardware-in-loop experimental results are conducted to demonstrate the effectiveness of the proposed control strategy.

Funder

National Natural Science Foundation of China

Local University Capacity Enhancement Project of Shanghai Science and Technology Commission

Science And Technology Project of Power Construction Corporation of China, Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3