A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China

Author:

Qian Sida1,Li Lei1ORCID

Affiliation:

1. School of Economics and Management, Shaanxi University of Science and Technology, University Park of Weiyang District, Xi’an 710021, China

Abstract

Global energy and environmental issues are becoming increasingly serious, and the promotion of clean energy and green transportation has become a common goal for all countries. In the logistics industry, traditional fuels such as diesel and natural gas can no longer meet the requirements of energy and climate change. Hydrogen fuel cell logistics vehicles are expected to become the mainstream vehicles for future logistics because of their “zero carbon” advantages. The GREET model is computer simulation software developed by the Argonne National Laboratory in the USA. It is extensively utilized in research pertaining to the energy and environmental impact of vehicles. This research study examines four types of logistics vehicles: hydrogen fuel cell vehicles (FCVs), electric vehicles, LNG-fueled vehicles, and diesel-fueled vehicles. Diesel-fueled logistics vehicles are currently the most abundant type of vehicle in the logistics sector. LNG-fueled logistics vehicles are considered as a short-term alternative to diesel logistics vehicles, while electric logistics vehicles are among the most popular types of new-energy vehicles currently. We analyze and compare their well-to-wheels (WTW) energy consumption and emissions with the help of GREET software and conduct lifecycle assessments (LCAs) of the four types of vehicles to analyze their energy and environmental benefits. When comparing the energy consumption of the four vehicle types, electric logistics vehicles (EVs) have the lowest energy consumption, with slightly lower energy consumption than FCVs. When comparing the nine airborne pollutant emissions of the four vehicle types, the emissions of the FCVs are significantly lower than those of spark-ignition internal combustion engine logistics vehicles (SI ICEVs), compression-ignition direct-injection internal combustion engine logistics vehicles (CIDI ICEVs), and EVs. This study fills a research gap regarding the energy consumption and environmental impact of logistics vehicles in China.

Funder

Shaanxi Provincial Science and Technology Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. The Perspective of Energy Poverty and 1st Energy Crisis of Green Transition;Hussain;Energy,2023

2. UN Environment Programme (2023, April 17). Making Peace with Nature. Available online: http://www.unep.org/resources/making-peace-nature.

3. UNFCCC (2023, April 17). The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement.

4. Novel Short-Term National Strategies to Promote the Use of Renewable Hydrogen in Road Transport: A Life Cycle Assessment of Passenger Car Fleets Partially Fuelled with Hydrogen;Candelaresi;Sci. Total Environ.,2023

5. UNFCCC (2023, April 17). The Glasgow Climate Pact—Key Outcomes from COP26. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3