A Power Quality Assessment of Electric Submersible Pumps Fed by Variable Frequency Drives under Normal and Failure Modes

Author:

Lingom Pascal M.1,Song-Manguelle Joseph1ORCID,Betoka-Onyama Simon Pierre1,Nyobe-Yome Jean Maurice2,Doumbia Mamadou Lamine1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Quebec, Trois-Rivieres, QC G8Z 4M3, Canada

2. Electrical Engineering Department, University of Douala, Douala 3QPW P9M, Cameroon

Abstract

This paper proposed a simplified modeling approach for a power quality (PQ) assessment of Electric Submersible Pumps (ESP) systems supplied by the two-level, the neutral-point-clamped three-level, and the cascaded H-bridge (CHB) multilevel inverter VFD topologies. The VFD switching function models and their analytical expressions are proposed to understand how they can create high-frequency components that might excite the resonance mode in a transmission cable or a rotating shaft system. Voltage, current, and motor airgap torque harmonics induced by each VFD topology in a balanced operation mode are derived and correlated to the PWM carrier and motor operating frequencies. The motor airgap harmonics are calculated based on Concordia’s transformation of voltages and currents in αβ-plan. These harmonic components are represented in the form of Campbell diagrams. An analysis of harmonics under unbalanced conditions was also conducted in a CHB VFD topology-powered ESP system with failed and bypassed cells. The investigated modulation technique is a neutral-shift PWM method that enables the system to operate balanced line-line voltages even if the line-neutral voltages are unbalanced. The effects of modifying the electrical spectrum using the neutral-shift PWM method on electrical and mechanical spectra are analyzed. The results of the Matlab/Simulink-based simulation show that the proposed full ESP system model is highly accurate in both normal and failure modes. The results are consistent with theoretical predictions and are graphically shown in the time and frequency domains for easy analysis. Hybrid experimental–numerical results on a reduced-scale laboratory setup are also discussed to confirm the correctness of the suggested developments.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Sensorless Control of CSC-Fed PMSM Drives with Low Switching Frequency for Electrical Submersible Pump Application;Ding;IEEE Trans. Ind. Appl.,2020

2. Downhole Telemetry Systems to Monitor Electric Submersible Pumps Parameters in Oil Well;Salazar;IEEE Access,2021

3. Subsea Electrical Submersible 1 Pump Significance in Petroleum 2 3 Offshore Production;Romero;J. Energy Resour. Technol.,2013

4. Electrical submersible pump system model to assist oil lifting studies;Cortes;J. Petrol. Sci. Eng.,2019

5. Operation of subsea electrical submersible pumps supplied over extended length cable systems;Smith;IEE Proc. Electr. Power Appl.,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3