Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations

Author:

Williams Baxter1ORCID,Bishop Daniel2ORCID,Gallardo Patricio3ORCID,Chase J. Geoffrey1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand

2. Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8041, New Zealand

3. EPECentre, University of Canterbury, Christchurch 8041, New Zealand

Abstract

Demand Side Management (DSM) is a cost-effective approach to managing electricity networks, aimed at reducing capacity requirements and costs, increasing the penetration of renewable generation, and reducing power system emissions. This review article explores the distinctive characteristics of electricity demand in the industrial, commercial, and residential sectors, and their relationship to successful implementation of DSM. The constraints and considerations for DSM are characterized as technical, economic, and behavioral factors, such as process requirements, business operation constraints, and consumer decisions, respectively. By considering all three types of factors and their impacts in each sector, this review contributes novel insights that can inform the future implementation of DSM. DSM in the industrial and commercial sectors is found to be primarily constrained by technical considerations, while DSM in the commercial sector is also subject to economic constraints. Conversely, residential demand is found to be primarily constrained by human behavior and outcomes, highly variable, and the largest contributor to peak demand. This review identifies sector-specific opportunities to enhance DSM uptake. Industrial DSM uptake will benefit from technological and process improvements; commercial DSM uptake can benefit from enhanced economic incentivization; and residential DSM uptake can benefit from improved understanding of the interactions between human behavior, human outcomes, and energy use. Finally, this review investigates behavioral models and concludes that agent-based models are best suited for integrating these interactions into energy models, thereby driving the uptake of DSM, particularly in the important residential sector.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3