Advanced ECMS for Hybrid Electric Heavy-Duty Trucks with Predictive Battery Discharge and Adaptive Operating Strategy under Real Driving Conditions

Author:

Schulze Sven1,Feyerl Günter1,Pischinger Stefan2

Affiliation:

1. Institute for Alternative Propulsion Systems, FH Aachen University of Applied Sciences, Hohenstaufenallee 10, 52066 Aachen, Germany

2. Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstrasse 4, 52074 Aachen, Germany

Abstract

To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.

Funder

Ministry of Innovation, Science, and Research of the State of North Rhine-Westphalia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Europäische Union (2020, January 23). Verordnung (EU) 2019/des Europäischen Parlaments und des Rates Vom 20 Juni 2019 zur Festlegung von CO2-Emissionsnormen für Neue Schwere Nutzfahrzeuge und zur Änderung der Verordnungen (EG) Nr. 595/2009 und (EU) 2018/956 des Europäischen Parlaments und des Rates Sowie der Richtlinie 96/53/EG des Rates. Verordnung (EU) 2019/des Europäischen Parlaments und des Rates vom 20. Juni 2019 zur Festlegung von CO2-Emissionsnormen für Neue Schwere Nutzfahrzeuge und zur Änderung der Verordnungen (EG) Nr. 595/2009 und (EU) 2018/956 des Europäischen Parlaments und des Rates Sowie der Richtlinie 96/53/EG des Rates. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32019R1242&from=EN.

2. European Automobile Manufacturers Association (2021, September 08). VECTO: Bringing down CO2 Emissions and Fuel Costs of Heavy-Duty Vehicles by Promoting Transparency, Vehicle Comparability and Competition. Available online: http://www.acea.be/uploads/publications/VECTO_infographic.pdf.

3. Helbing, M. (2014). Energiemanagement für eine Parallele Hybridarchitektur. [Diploma Thesis, TU Dresden].

4. Bertsekas, D.P. (2005). Dynamic Programming and Optimal Control, Athena Scientific (Athena Scientific Optimization and Computation Series 3). [3rd ed.].

5. Sundström, O., and Guzzella, L. (2009, January 8–10). A Generic Dynamic Programming Matlab Function. Proceedings of the 18th IEEE International Conference on Control Applications, St. Petersburg, Russia.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3