Study on Preparation and Properties of PNIPAm/PPy Hydrogel Hygroscopic Material for Solid Dehumidification System

Author:

Liu Jinlin1,Wang Yu1ORCID,Zhong Zilong1,Zhou Zhou1,Chen Dongliang1,Wang Weijie1,Mai Shuaixing1

Affiliation:

1. College of Urban Construction, Nanjing Tech University, Nanjing 211816, China

Abstract

Air-conditioning systems account for 40–60% of the energy consumption of buildings, and most of this figure corresponds to the cooling and dehumidification process of air-conditioning units. Compared with traditional compressed air-conditioning systems, solid adsorption dehumidification systems possess good potential to improve indoor air quality and reduce buildings’ energy consumption. However, there are still some problems that prevent the use of solid adsorption dehumidification systems, such as their complexity and high regeneration temperatures. The key to solving the above problem is the discovery of more suitable adsorbents. In this paper, poly N-isopropylacrylamide/polypyrrole (PNIPAm/PPy) hydrogel was selected as the research object, and the performance of the dehumidification material and its potential for application in solid dehumidification systems were studied. It was found that the pore structure of PNIPAm/PPy was relatively complex and that there were abundant pores with uneven pore sizes. The minimum pore size was about 4 μm, while the maximum pore size was about 25 μm, and the pore sizes were mostly distributed between 8 and 20 μm. Abundant and dense pores ensure good hygroscopic and water-releasing properties of the resulting hydrogel. The PPy inside the hydrogel acts as both a hygroscopic and photothermal agent. In an environment with a relative humidity of 90%, 60%, and 50%, the hygroscopic efficiency of PNIPAm/PPy reached 80% in about 75, 100, and 120 min, and the corresponding unit equilibrium hygroscopic capacity values were 3.85 g/g, 3.72 g/g, and 3.71 g/g, respectively. In the initial stage, the moisture absorption increased with the increase in time; then, the increase in moisture absorption decreased. When the temperature was below 40 °C, the hygroscopic performance of PNIPAm/PPy was almost temperature-independent. The PNIPAm/PPy with different thicknesses showed similar moisture absorption efficiency. The lowest desorption temperature of PNIPAm/PPy was 40 °C, which indicates that low-grade energy can be used for material desorption. And the higher the temperature, the faster the desorption rate of PNIPAm/PPy and the higher the desorption amount. It can be seen that the PNIPAm/PPy hydrogel presents good desorption performance and can be used repeatedly.

Funder

National Natural Science Foundation of China

National College Student Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. A review of different strategies for HVAC energy saving;Vakiloroaya;Energy Convers. Manag.,2014

2. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade;Cao;Energy Build.,2016

3. Membrane-based humidity pump: Performance and limitations;Zhang;J. Membr. Sci.,2000

4. Liu, J.L. (2020). Experimental Study on the Performance of Solid Adsorption Indoor Air Dehumidification Materials. [Master’s Thesis, Beijing University of Civil Engineering and Architecture].

5. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate;Rao;Renew. Sustain. Energy Rev.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3