Esophagus Segmentation in CT Images via Spatial Attention Network and STAPLE Algorithm

Author:

Tran Minh-TrieuORCID,Kim Soo-Hyung,Yang Hyung-JeongORCID,Lee Guee-SangORCID,Oh In-JaeORCID,Kang Sae-RyungORCID

Abstract

One essential step in radiotherapy treatment planning is the organ at risk of segmentation in Computed Tomography (CT). Many recent studies have focused on several organs such as the lung, heart, esophagus, trachea, liver, aorta, kidney, and prostate. However, among the above organs, the esophagus is one of the most difficult organs to segment because of its small size, ambiguous boundary, and very low contrast in CT images. To address these challenges, we propose a fully automated framework for the esophagus segmentation from CT images. The proposed method is based on the processing of slice images from the original three-dimensional (3D) image so that our method does not require large computational resources. We employ the spatial attention mechanism with the atrous spatial pyramid pooling module to locate the esophagus effectively, which enhances the segmentation performance. To optimize our model, we use group normalization because the computation is independent of batch sizes, and its performance is stable. We also used the simultaneous truth and performance level estimation (STAPLE) algorithm to reach robust results for segmentation. Firstly, our model was trained by k-fold cross-validation. And then, the candidate labels generated by each fold were combined by using the STAPLE algorithm. And as a result, Dice and Hausdorff Distance scores have an improvement when applying this algorithm to our segmentation results. Our method was evaluated on SegTHOR and StructSeg 2019 datasets, and the experiment shows that our method outperforms the state-of-the-art methods in esophagus segmentation. Our approach shows a promising result in esophagus segmentation, which is still challenging in medical analyses.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3