Investigating Behavior of Six Methods for Sediment Transport Capacity Estimation of Spatial-Temporal Soil Erosion

Author:

Van Linh Nguyen,Le Xuan-HienORCID,Nguyen Giang V.,Yeon MinhoORCID,Jung Sungho,Lee Giha

Abstract

Estimation of sediment transport capacity (STC) plays a crucial role in simulating soil erosion using any physics-based models. In this research, we aim to investigate the pros and cons of six popular STC methods (namely, Shear velocity, Kilinc-Richardson (KR), Effective stream power, Slope and unit discharge, Englund-Hansen (EH), and Unit stream power) for soil erosion/deposition simulation at watershed scales. An in-depth analysis was performed using the selected STC methods integrated into the Grid Surface Subsurface Hydrologic Analysis model for investigating the changes in morphology at spatial-temporal scales at the Cheoncheon watershed, South Korea, over three storm events. Conclusions were drawn as follows. (1) Due to the ability of the KR and EH methods to include an additional parameter (i.e., erodibility coefficient), they outperformed others by producing more accurate simulation results of sediment concentration predictions. The KR method also proved to be superior to the EH method when it showed a more suitable for sediment concentration simulations with a wide range of sediment size and forcing magnitude. (2) We further selected 2 STC methods among the 6 methods to deeply explore the spatial distribution of erosion/deposition. The overall results were more agreeable. For instance, the phenomenon of erosion mainly occurred upstream of watersheds with steep slopes and unbalanced initial sediment concentrations, whereas deposition typically appeared at locations with flat terrain (or along the mainstream). The EH method demonstrated the influence of topography (e.g., gradient slope) on accretionary erosion/deposition results more significantly than the KR method. The obtained results contribute a new understanding of rainfall-sediment-runoff processes and provide fundamental plans for soil conservation in watersheds.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3