Abstract
Management of solid mine wastes requires detailed material characterisation at the start of a project to minimize opportunities for the generation of acid and metalliferous drainage (AMD). Mine planning must focus on obtaining a thorough understanding of the environmental properties of the future waste rock materials. Using drill core obtained from a porphyry Cu project in Northern Europe, this study demonstrates the integrated application of mineralogical and geochemical data to enable the construction of enviro-geometallurgical models. Geoenvironmental core logging, static chemical testing, bulk- and hyperspectral mineralogical techniques, and calculated mineralogy from assay techniques were used to critically evaluate the potential for AMD formation. These techniques provide value-adding opportunities to existing datasets and provide robust cross-validation methods for each technique. A new geoenvironmental logging code and a new geoenvironmental index using hyperspectral mineralogical data (Hy-GI) were developed and embedded into the geochemistry-mineralogy-texture-geometallurgy (GMTG) approach for waste characterisation. This approach is recommended for new mining projects (i.e., early life-of-mine stages) to ensure accurate geoenvironmental forecasting, therefore facilitating the development of an effective waste management plan that minimizes geoenvironmental risks posed by the mined materials.
Funder
Australian Research Council
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference50 articles.
1. Porphyry Copper Systems
2. A Plate Tectonic Model for the Origin of Porphyry Copper Deposits
3. Tectono-magmatic precursors for geophysical data over a copper gold porphyry Cu-(Mo-Au) deposit formation;Richards;Econ. Geol.,2003
4. Geochemistry of Porphyry Deposits;Cooke,2014
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献