Abstract
The correlations between the logarithm of the unfolding rate of 108 proteins and their structural parameters were calculated. We showed that there is a good correlation between the logarithm of folding rates (in native conditions) and unfolding rates (in denaturing conditions) (0.79) and protein stability and unfolding rate (0.79). Thus, the faster the protein folds, the faster it unfolds. Folding and unfolding rates are higher for the proteins with two-state kinetics, in comparison with the proteins with multi-state kinetics. At the same time, two-state bacterial proteins folds and unfolds two orders of magnitude faster than two-state eukaryotic proteins, and multi-state bacterial proteins folds and unfolds slower than multi-state eukaryotic proteins. Despite the fact that the folding rates of thermophilic and mesophilic proteins are close, the unfolding rates of thermophilic proteins is about two orders of magnitude lower than for mesophilic proteins. The correlation between unfolding rate and stability of thermophilic proteins is high (0.90). We also found that the unfolding rate correlates with such structural parameters as: size of the protein, radius of the cross-section, logarithm of absolute contact order, and radius of gyration. This information will be useful for engineering and designing new proteins with desired properties.
Funder
Russian Science Support Foundation
Subject
Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献