Characterization of Canine Influenza Virus A (H3N2) Circulating in Dogs in China from 2016 to 2018

Author:

Li YuanguoORCID,Zhang Xinghai,Liu Yuxiu,Feng Ye,Wang Tiecheng,Ge YeORCID,Kong Yunyi,Sun Hongyu,Xiang Haiyang,Zhou Bo,Fang Shushan,Xia Qing,Hu Xinyu,Sun Weiyang,Wang Xuefeng,Meng Keyin,Lv Chaoxiang,Li Entao,Xia Xianzhu,He HongbinORCID,Gao Yuwei,Jin Ningyi

Abstract

Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015–2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017–2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3