Design and Analysis of a Contact Piezo Microphone for Recording Tracheal Breathing Sounds

Author:

Ashraf Walid1,Moussavi Zahra1ORCID

Affiliation:

1. Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Abstract

Analysis of tracheal breathing sounds (TBS) is a significant area of study in medical diagnostics and monitoring for respiratory diseases and obstructive sleep apnea (OSA). Recorded at the suprasternal notch, TBS can provide detailed insights into the respiratory system’s functioning and health. This method has been particularly useful for non-invasive assessments and is used in various clinical settings, such as OSA, asthma, respiratory infectious diseases, lung function, and detection during either wakefulness or sleep. One of the challenges and limitations of TBS recording is the background noise, including speech sound, movement, and even non-tracheal breathing sounds propagating in the air. The breathing sounds captured from the nose or mouth can interfere with the tracheal breathing sounds, making it difficult to isolate the sounds necessary for accurate diagnostics. In this study, two surface microphones are proposed to accurately record TBS acquired solely from the trachea. The frequency response of each microphone is compared with a reference microphone. Additionally, this study evaluates the tracheal and lung breathing sounds of six participants recorded using the proposed microphones versus a commercial omnidirectional microphone, both in environments with and without background white noise. The proposed microphones demonstrated reduced susceptibility to background noise particularly in the frequency ranges (1800–2199) Hz and (2200–2599) Hz with maximum deviation of 2 dB and 2.1 dB, respectively, compared to 9 dB observed in the commercial microphone. The findings of this study have potential implications for improving the accuracy and reliability of respiratory diagnostics in clinical practice.

Funder

Canadian Institutes of Health Research

Manitoba Health Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3