A Novel, Low-Cost and Reliable Workbench for Optimal Voltage Distribution on Piezoelectric Array Actuators

Author:

Schinaia Lorenzo,Scorza AndreaORCID,Botta Fabio,Rossi AndreaORCID,Maiozzi Roberto,Orsini FrancescoORCID,Sciuto Salvatore AndreaORCID

Abstract

The vibration control of structures is a valuable technique to increase their integrity and life-cycle. Among smart materials, the passive and active control systems based on piezoelectric elements have been studied in depth. Since the size and location of the piezo-elements on the structure are relevant matters for the damping efficiency, many works have focused on their placement optimization. Under certain circumstances, some structures may be excited by more vibration modes at the same time; hence, the signal conditioning system of the piezoelectric actuators must be capable of adjusting the driving signal in terms of voltage distribution, frequencies and associated amplitudes in order to maximize the damping efficiency. Moreover, in some applications, it could be useful to individually control each actuator therefore tailor-made power supply and signal generation systems are often necessary. This work suggests a low-cost and reliable workbench that overcomes the afore mentioned problems. The system consists of: (1) two arrays of 13 piezoceramic plates which have been glued on an aluminium beam, (2) ad hoc power supply equipment, and (3) mechanical relays arrays managed by a microcontroller for the individual handling of their operating modes. Furthermore, an Arduino board and an in-house software have been implemented in order to perform a task on each relay that is in turn wired to a single piezoelectric plate (PP). The performance of the developed system is evaluated in terms of noise and distortion of the testing signal measured at different points of the workbench. The results show that the proposed workbench may represent a good trade-off between affordability, accuracy and reliability and it can be used for several research purposes.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3