Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide

Author:

Wang Huan12,Yu Shi-Jun1,Kim In-Ho2ORCID

Affiliation:

1. School of Biology and Food Engineering, Chuzhou University, Chuzhou 239012, China

2. Department of Animal Resource & Science, Dankook University, Cheonan 31116, Republic of Korea

Abstract

A total of 200 26-day-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.55 ± 0.62 kg) were used in a 6-week experiment to evaluate the effects of adding probiotics complex supplementation (Syner-ZymeF10) with high and low ZnO diets on the performance of weaning pigs in 42 days. Pigs were randomly allotted to a 2 × 2 factorial arrangement and they were supplemented with two concentration level of ZnO with 3000 ppm and 300 ppm and probiotics complex supplementation with 0 and 0.1%. There were ten replicate pens per treatment with five pigs per pen (two gilts and three barrows). Pigs fed diets with 3000 ppm ZnO had a higher BW during the overall period and ADG during d 8–21, d 22–42, and overall period than pigs receiving 300 ppm ZnO diets (p < 0.05), as well as a G: F which tended to increase on d 8–21 and overall period (p < 0.1) and decreased tendency on faecal gas emission of methyl mercaptans and acetic acid concentration (p < 0.1). Dietary probiotics complex supplementation had decreased the E. coli count (p < 0.05) and tended to increase the Lactobacillus count (p < 0.1). Dietary probiotics complex supplementation and different level of ZnO supplementation had no significant effect on the nutrition digestibility and faecal score (p > 0.05). In conclusion, probiotic supplementation reduced the fecal E. coli counts and tended to improve Lactobacillus counts. There were no interactive effects between ZnO and probiotic complex supplementation on all the measured parameters.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3