Effects of an Endocrine Disruptor Triclosan on Ruditapes decussatus: Multimarker and Histological Approaches

Author:

Added Amira1,Khalloufi Noureddine1,Khazri Abdelhafidh1,Harrath Abdel Halim2ORCID,Mansour Lamjed2ORCID,Nahdi Saber2,Boufahja Fehmi3,Aldahmash Waleed2ORCID,Alrefaei Abdulwahed Fahad2ORCID,Dellali Mohamed1ORCID

Affiliation:

1. LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia

2. Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

Abstract

The aim of this work was to study the ecotoxicological effects of an endocrine disruptor triclosan on the clam Ruditapes decussatus. The bivalves were exposed to three concentrations of this biocide (C1 = 100 ng/L, C2 = 200 ng/L and C3 = 500 ng/L) for three and seven days. The impact was assessed at the gills and digestive glands, through activities of an antioxidant defense biomarker (Gluthatione S-Transferase, GST), a damage biomarker (Malondialdehyde, MDA), and a neurotoxicity biomarker (Acetylcholinesterase, AChE). Furthermore, histological traits were approached in different organs to evaluate any possible alteration induced by triclosan. It appears from this study that both gills and digestive glands responded discernibly to triclosan and effects were concentration-dependent. The stressed clams showed a significant increase in their GST and MDA activities in gills and digestive glands compared to controls for both time slots considered. In turn, the AChE activity was clearly inhibited in both organs in a time dependent way. The histological study made it possible to observe several structural pathologies caused by triclosan in the gills and the digestive gland. These alterations consisted mainly of inflammatory reactions, malformations of the lamellae and fusion of the gill filaments, degeneration of the connective tissue, and the erosion of the gill cilia with the appearance of certain severe alterations (cell necrosis and apoptosis), which can thus cause a malfunction of the gills and eventually lead to a reduction in oxygen consumption and a disruption of the osmoregulation for bivalves. Alterations in the digestive gland have also been detected, mainly by epithelial alterations, thinning of the tubules, and alteration of the basal cell membrane which can impair the ability of clams to absorb food. At germinal cells, several damages were observed in the oocytes which probably disturbed the reproductive function and the fertility of the clams. The damages observed in female gonads were caused by the cytolysis of a large number of oocytes through autophagy and necrosis at 200 ng triclosan/L. Moreover, at 500 ng triclosan/L, hemocytic infiltration was observed in acini and apoptotic bodies reflected in the fragmentation of more than 90% of oocytes.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3