Comparative Metabolome Analyses of Ivermectin-Resistant and -Susceptible Strains of Haemonchus contortus

Author:

Tuersong Waresi1,Liu Xin1,Wang Yifan1,Wu Simin1,Qin Peixi1,Zhu Shengnang1,Liu Feng1,Wang Chunqun1,Hu Min1

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Resistance to anthelmintics such as ivermectin (IVM) is currently a major problem in the treatment of Haemonchus contortus, an important parasitic nematode of small ruminants. Although many advances have been made in understanding the IVM resistance mechanism, its exact mechanism remains unclear for H. contortus. Therefore, understanding the resistance mechanism becomes increasingly important for controlling haemonchosis. Recent research showed that the metabolic state of bacteria influences their susceptibility to antibiotics. However, little information is available on the roles of metabolites and metabolic pathways in IVM resistance of H. contortus. In this study, comparative analyses of the metabolomics of IVM-susceptible and -resistant adult H. contortus worms were carried out to explore the role of H. contortus metabolism in IVM resistance. In total, 705 metabolites belonging to 42 categories were detected, and 86 differential metabolites (17 upregulated and 69 downregulated) were identified in the IVM-resistant strain compared to the susceptible one. A KEGG pathway analysis showed that these 86 differential metabolites were enriched in 42 pathways that mainly included purine metabolism; the biosynthesis of amino acids; glycine, serine, and threonine metabolism; and cysteine and methionine metabolism. These results showed that amino acid metabolism may be mediated by the uptake of IVM and related with IVM resistance in H. contortus. This study contributes to our understanding of the mechanisms of IVM resistance and may provide effective approaches to manage infection by resistant strains of H. contortus.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3