Is Markerless More or Less? Comparing a Smartphone Computer Vision Method for Equine Lameness Assessment to Multi-Camera Motion Capture

Author:

Lawin Felix Järemo1,Byström Anna2ORCID,Roepstorff Christoffer1,Rhodin Marie2ORCID,Almlöf Mattias1,Silva Mudith1,Andersen Pia Haubro2ORCID,Kjellström Hedvig3,Hernlund Elin12ORCID

Affiliation:

1. Sleip AI, Birger Jarlsgatan 58, 11426 Stockholm, Sweden

2. Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden

3. KTH Royal Institute of Technology, Division of Robotics, Perception and Learning, 10044 Stockholm, Sweden

Abstract

Computer vision is a subcategory of artificial intelligence focused on extraction of information from images and video. It provides a compelling new means for objective orthopaedic gait assessment in horses using accessible hardware, such as a smartphone, for markerless motion analysis. This study aimed to explore the lameness assessment capacity of a smartphone single camera (SC) markerless computer vision application by comparing measurements of the vertical motion of the head and pelvis to an optical motion capture multi-camera (MC) system using skin attached reflective markers. Twenty-five horses were recorded with a smartphone (60 Hz) and a 13 camera MC-system (200 Hz) while trotting two times back and forth on a 30 m runway. The smartphone video was processed using artificial neural networks detecting the horse’s direction, action and motion of body segments. After filtering, the vertical displacement curves from the head and pelvis were synchronised between systems using cross-correlation. This rendered 655 and 404 matching stride segmented curves for the head and pelvis respectively. From the stride segmented vertical displacement signals, differences between the two minima (MinDiff) and the two maxima (MaxDiff) respectively per stride were compared between the systems. Trial mean difference between systems was 2.2 mm (range 0.0–8.7 mm) for head and 2.2 mm (range 0.0–6.5 mm) for pelvis. Within-trial standard deviations ranged between 3.1–28.1 mm for MC and between 3.6–26.2 mm for SC. The ease of use and good agreement with MC indicate that the SC application is a promising tool for detecting clinically relevant levels of asymmetry in horses, enabling frequent and convenient gait monitoring over time.

Funder

Marie-Claire Cronstedts Stiftelse

Swedish research council FORMAS

CareNet

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3