Combining Genetic Analysis and Multivariate Modeling to Evaluate Spectral Reflectance Indices as Indirect Selection Tools in Wheat Breeding under Water Deficit Stress Conditions

Author:

El-Hendawy SalahORCID,Al-Suhaibani Nasser,Al-Ashkar IbrahimORCID,Alotaibi Majed,Tahir Muhammad Usman,Solieman Talaat,Hassan Wael M.ORCID

Abstract

Progress in high-throughput tools has enabled plant breeders to increase the rate of genetic gain through multidimensional assessment of previously intractable traits in a fast and nondestructive manner. This study investigates the potential use of spectral reflectance indices (SRIs; 15 vegetation-SRIs; 15 water-SRIs) as alternative selection tools for destructively measured traits in wheat breeding programs. The genetic variability, heritability (h2), genetic gain (GG), and expected genetic advances (GA) of these indices were compared with those of destructively measured traits in 43 F7-8 recombinant inbred lines (RILs) grown under limited water conditions. The performance of SRIs to estimate the destructively measured traits directly was also evaluated using the partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) models. Most vegetation-SRIs exhibited high genotypic variation, similar to the measured traits, and phenotypic correlations with these traits, compared with the water-SRIs. Most vegetation-SRIs presented comparable values for h2 (>60%) and GG (>20%) as intermediate traits, while about half of water-SRIs exhibited a high h2 (>60%), but low GG (<20%). Principle component analysis revealed that most vegetation-SRIs and seven of 15 water-SRIs were grouped together in a positive direction, had a moderate to strong relationship with measured traits, and could identify the drought-tolerant parent Sakha 93 and several RILs. The PLSR model based on all SRIs as a single index showed moderate to high R2 in calibration (0.53–0.75) and validation (0.46–0.72) datasets, with strong relationships between observed and predicted values of measured traits. The SMLR models identified four and three SRIs from vegetation-SRIs and water-SRIs, respectively, to explain 63–86% of the total variability in measured traits among genotypes. These results demonstrated that vegetation-SRIs can be used individually or combined with water-SRIs as alternative breeding tools to increase genetic gains and selection accuracy in spring wheat breeding.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3