Abstract
Progress in high-throughput tools has enabled plant breeders to increase the rate of genetic gain through multidimensional assessment of previously intractable traits in a fast and nondestructive manner. This study investigates the potential use of spectral reflectance indices (SRIs; 15 vegetation-SRIs; 15 water-SRIs) as alternative selection tools for destructively measured traits in wheat breeding programs. The genetic variability, heritability (h2), genetic gain (GG), and expected genetic advances (GA) of these indices were compared with those of destructively measured traits in 43 F7-8 recombinant inbred lines (RILs) grown under limited water conditions. The performance of SRIs to estimate the destructively measured traits directly was also evaluated using the partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) models. Most vegetation-SRIs exhibited high genotypic variation, similar to the measured traits, and phenotypic correlations with these traits, compared with the water-SRIs. Most vegetation-SRIs presented comparable values for h2 (>60%) and GG (>20%) as intermediate traits, while about half of water-SRIs exhibited a high h2 (>60%), but low GG (<20%). Principle component analysis revealed that most vegetation-SRIs and seven of 15 water-SRIs were grouped together in a positive direction, had a moderate to strong relationship with measured traits, and could identify the drought-tolerant parent Sakha 93 and several RILs. The PLSR model based on all SRIs as a single index showed moderate to high R2 in calibration (0.53–0.75) and validation (0.46–0.72) datasets, with strong relationships between observed and predicted values of measured traits. The SMLR models identified four and three SRIs from vegetation-SRIs and water-SRIs, respectively, to explain 63–86% of the total variability in measured traits among genotypes. These results demonstrated that vegetation-SRIs can be used individually or combined with water-SRIs as alternative breeding tools to increase genetic gains and selection accuracy in spring wheat breeding.
Funder
Deanship of Scientific Research, King Saud University
Subject
General Earth and Planetary Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献