Regional Forest Mapping over Mountainous Areas in Northeast China Using Newly Identified Critical Temporal Features of Sentinel-1 Backscattering

Author:

Yu Haoyang,Ni WenjianORCID,Zhang ZhongjunORCID,Sun Guoqing,Zhang ZhiyuORCID

Abstract

Sentinel-1 provides an extraordinary opportunity to explore the temporal behavior of backscattering of C-band synthetic aperture radar (SAR) due to its unique capability of successive observations every 12 days. This study reported new findings on the critical temporal features of Sentinel-1 backscattering over mountainous forested areas in northeast China and their application in regional forest mapping. Two interesting phenomena were discovered through the analysis of 450 scenes of images acquired by Sentinel-1A or Sentinel-1B over an area of 318,898.62 km2. The first phenomenon was that the dates of the largest drops of backscattering coefficients over forest and non-forest plots were different during the transition from autumn to winter. The largest drop of non-forest plots occurred around the date of the minimum temperature decreasing below 0 °C, while that of forest plots occurred around the date of the maximum temperature decreasing below 0 °C. The second phenomenon was that at the dates where these two drops occurred, the magnitude of the drop was negatively correlated with the forest canopy coverage for the first date and positively correlated for the second date. Based on these two phenomena, two methods for the forest mapping, referred to as the direct method and the indirect method, were proposed using only three dates of Sentinel-1 images, i.e., Date1: before the minimum temperature decreased below 0 °C, Date2: after the minimum temperature decreased below 0 °C but before the maximum temperature decreased below 0 °C, and Date3: after the maximum temperature decreased below 0 °C. The results showed that the overall accuracy of the forest map produced by the direct method was 93.60%, while that by the indirect method was 93.80%. Their accuracies were comparable with those of forest maps derived from publicly released land cover maps, which was approximately 94.42% for the best one. This study proposed a new way to do large-scale forest mapping in annually frozen regions using as few Sentinel-1 SAR images as possible.

Funder

National key research and development Program of China

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3