Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning

Author:

Windrim LloydORCID,Bryson MitchORCID

Abstract

Accurate measurements of the structural characteristics of trees such as height, diameter, sweep and taper are an important part of forest inventories in managed forests and commercial plantations. Both terrestrial and aerial LiDAR are currently employed to produce pointcloud data from which inventory metrics can be determined. Terrestrial/ground-based scanning typically provides pointclouds resolutions of many thousands of points per m 2 from which tree stems can be observed and inventory measurements made directly, whereas typical resolutions from aerial scanning (tens of points per m 2 ) require inventory metrics to be regressed from LiDAR variables using inventory reference data collected from the ground. Recent developments in miniaturised LiDAR sensors are enabling aerial capture of pointclouds from low-flying aircraft at high-resolutions (hundreds of points per m 2 ) from which tree stem information starts to become directly visible, enabling the possibility for plot-scale inventories that do not require access to the ground. In this paper, we develop new approaches to automated tree detection, segmentation and stem reconstruction using algorithms based on deep supervised machine learning which are designed for use with aerially acquired high-resolution LiDAR pointclouds. Our approach is able to isolate individual trees, determine tree stem points and further build a segmented model of the main tree stem that encompasses tree height, diameter, taper, and sweep. Through the use of deep learning models, our approach is able to adapt to variations in pointcloud densities and partial occlusions that are particularly prevalent when data is captured from the air. We present results of our algorithms using high-resolution LiDAR pointclouds captured from a helicopter over two Radiata pine forests in NSW, Australia.

Funder

Forest and Wood Products Australia

National Institute for Forest Products Innovation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference80 articles.

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3