Abstract
Development of convolutional neural network (CNN) optimized for object detection, led to significant developments in ship detection. Although training data critically affect the performance of the CNN-based training model, previous studies focused mostly on enhancing the architecture of the training model. This study developed a sophisticated and automatic methodology to generate verified and robust training data by employing synthetic aperture radar (SAR) images and automatic identification system (AIS) data. The extraction of training data initiated from interpolating the discretely received AIS positions to the exact position of the ship at the time of image acquisition. The interpolation was conducted by applying a Kalman filter, followed by compensating the Doppler frequency shift. The bounding box for the ship was constructed tightly considering the installation of the AIS equipment and the exact size of the ship. From 18 Sentinel-1 SAR images using a completely automated procedure, 7489 training data were obtained, compared with a different set of training data from visual interpretation. The ship detection model trained using the automatic training data obtained 0.7713 of overall detection performance from 3 Sentinel-1 SAR images, which exceeded that of manual training data, evading the artificial structures of harbors and azimuth ambiguity ghost signals from detection.
Funder
Ministry of the Interior and Safety
Ministry of Oceans and Fisheries
Subject
General Earth and Planetary Sciences
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献