Abstract
Chlorophyll-a (Chl-a) is one of the major indicators for water quality assessment and recent developments in ocean color remote sensing have greatly improved the ability to monitor Chl-a on a global scale. The coarse spatial resolution is one of the major limitations for most ocean color sensors including Moderate Resolution Imaging Spectroradiometer (MODIS), especially in monitoring the Chl-a concentrations in coastal regions. To improve its spatial resolution, downscaling techniques have been suggested with polynomial regression models. Nevertheless, polynomial regression has some restrictions, including sensitivity to outliers and fixed mathematical forms. Therefore, the current study applied genetic programming (GP) for downscaling Chl-a. The proposed GP model in the current study was compared with multiple polynomial regression (MPR) to different degrees (2nd-, 3rd-, and 4th-degree) to illustrate their performances for downscaling MODIS Chl-a. The obtained results indicate that GP with R2 = 0.927 and RMSE = 0.1642 on the winter day and R2 = 0.763 and RMSE = 0.5274 on the summer day provides higher accuracy on both winter and summer days than all the applied MPR models because the GP model can automatically produce appropriate mathematical equations without any restrictions. In addition, the GP model is the least sensitive model to the changes in the input parameters. The improved downscaling data provide better information to monitor the status of oceanic and coastal marine ecosystems that are also critical for fisheries and fishing farming.
Funder
National Research Foundation of Korea
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献