Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework

Author:

Navarrete-López Claudia,Herrera Manuel,Brentan Bruno,Luvizotto Edevar,Izquierdo JoaquínORCID

Abstract

Epidemiology-based models have shown to have successful adaptations to deal with challenges coming from various areas of Engineering, such as those related to energy use or asset management. This paper deals with urban water demand, and data analysis is based on an Epidemiology tool-set herein developed. This combination represents a novel framework in urban hydraulics. Specifically, various reduction tools for time series analyses based on a symbolic approximate (SAX) coding technique able to deal with simple versions of data sets are presented. Then, a neural-network-based model that uses SAX-based knowledge-generation from various time series is shown to improve forecasting abilities. This knowledge is produced by identifying water distribution district metered areas of high similarity to a given target area and sharing demand patterns with the latter. The proposal has been tested with databases from a Brazilian water utility, providing key knowledge for improving water management and hydraulic operation of the distribution system. This novel analysis framework shows several benefits in terms of accuracy and performance of neural network models for water demand.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3