A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry

Author:

Pretto Thomas1ORCID,Franca Marina12ORCID,Zani Veronica12,Gross Silvia123,Pedron Danilo12,Pilot Roberto12ORCID,Signorini Raffaella12ORCID

Affiliation:

1. Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy

2. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy

3. Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Abstract

The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293–323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material.

Funder

Chemical Science Department of University od Padova

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3