Efficient Defect Detection of Rotating Goods under the Background of Intelligent Retail

Author:

Hu Zhengming1ORCID,Zeng Xuepeng1,Xie Kai1ORCID,Wen Chang2ORCID,He Jianbiao3,Zhang Wei4

Affiliation:

1. School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China

2. School of Computer Science, Yangtze University, Jingzhou 434023, China

3. School of Computer Science, Central South University, Changsha 410083, China

4. School of Electronic Information, Central South University, Changsha 410083, China

Abstract

Dynamic visual vending machines are rapidly growing in popularity, offering convenience and speed to customers. However, there is a prevalent issue with consumers damaging goods and then returning them to the machine, severely affecting business interests. This paper addresses the issue from the standpoint of defect detection. Although existing industrial defect detection algorithms, such as PatchCore, perform well, they face challenges, including handling goods in various orientations, detection speeds that do not meet real-time monitoring requirements, and complex backgrounds that hinder detection accuracy. These challenges hinder their application in dynamic vending environments. It is crucial to note that efficient visual features play a vital role in memory banks, yet current memory repositories for industrial inspection algorithms do not adequately address the problem of location-specific feature redundancy. To tackle these issues, this paper introduces a novel defect detection algorithm for goods using adaptive subsampling and partitioned memory banks. Firstly, Grad-CAM is utilized to extract deep features, which, in combination with shallow features, mitigate the impact of complex backgrounds on detection accuracy. Next, graph convolutional networks extract rotationally invariant features. The adaptive subsampling partitioned memory bank is then employed to store features of non-defective goods, which reduces memory consumption and enhances training speed. Experimental results on the MVTec AD dataset demonstrate that the proposed algorithm achieves a marked improvement in detection speed while maintaining accuracy that is comparable to state-of-the-art models.

Funder

National Natural Science Foundation of China

Undergraduate Training Programs for Innovation and Entrepreneurship at Yangtze University

National Innovation and Entrepreneurship Training Program for College Students

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3